首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   64595篇
  免费   6195篇
  国内免费   3390篇
电工技术   4894篇
技术理论   5篇
综合类   4739篇
化学工业   9834篇
金属工艺   3882篇
机械仪表   3856篇
建筑科学   5507篇
矿业工程   1760篇
能源动力   1951篇
轻工业   4551篇
水利工程   1256篇
石油天然气   3290篇
武器工业   583篇
无线电   7775篇
一般工业技术   7703篇
冶金工业   2672篇
原子能技术   841篇
自动化技术   9081篇
  2024年   161篇
  2023年   1152篇
  2022年   1812篇
  2021年   2779篇
  2020年   2030篇
  2019年   1641篇
  2018年   1843篇
  2017年   2043篇
  2016年   1826篇
  2015年   2551篇
  2014年   3087篇
  2013年   3861篇
  2012年   4304篇
  2011年   4531篇
  2010年   4125篇
  2009年   3818篇
  2008年   3957篇
  2007年   3827篇
  2006年   3745篇
  2005年   3103篇
  2004年   2211篇
  2003年   1968篇
  2002年   2039篇
  2001年   1805篇
  2000年   1551篇
  1999年   1607篇
  1998年   1159篇
  1997年   1022篇
  1996年   987篇
  1995年   810篇
  1994年   666篇
  1993年   492篇
  1992年   438篇
  1991年   323篇
  1990年   216篇
  1989年   180篇
  1988年   157篇
  1987年   93篇
  1986年   64篇
  1985年   55篇
  1984年   33篇
  1983年   19篇
  1982年   31篇
  1981年   18篇
  1980年   18篇
  1979年   9篇
  1978年   2篇
  1959年   3篇
  1951年   8篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
41.
Ionomics is a novel multidisciplinary field that uses advanced techniques to investigate the composition and distribution of all minerals and trace elements in a living organism and their variations under diverse physiological and pathological conditions. It involves both high-throughput elemental profiling technologies and bioinformatic methods, providing opportunities to study the molecular mechanism underlying the metabolism, homeostasis, and cross-talk of these elements. While much effort has been made in exploring the ionomic traits relating to plant physiology and nutrition, the use of ionomics in the research of serious diseases is still in progress. In recent years, a number of ionomic studies have been carried out for a variety of complex diseases, which offer theoretical and practical insights into the etiology, early diagnosis, prognosis, and therapy of them. This review aims to give an overview of recent applications of ionomics in the study of complex diseases and discuss the latest advances and future trends in this area. Overall, disease ionomics may provide substantial information for systematic understanding of the properties of the elements and the dynamic network of elements involved in the onset and development of diseases.  相似文献   
42.
Zheng  Jun-Yun  Ko  Ren-Song 《Wireless Networks》2015,21(1):297-314

Large scale wireless sensor networks raise many challenges in the design of efficient and effective routing algorithm due to their complexity and hardware constraints. However, the scalability challenge may be mitigated from a macroscopic perspective. One example is the distributed De la Garza iteration (DDLGI) algorithm for global routing load-balancing, based on a set of partial differential equations iteratively solved by the De la Garza method. We theoretically analyze the parallelism of DDLGI and illustrate that the region of interest may impact the degree of parallelism and error. Furthermore, though DDLGI always converges, the slow convergence and long-range information exchange problems may lead to excess energy consumption in communication. Thus, we propose various enhanced De la Garza routing (E-DLGR) algorithms to alleviate the energy consumption problem by which nodes may exchange less information and only need to exchange information with closer nodes to complete each iteration. Our theoretical analysis and simulation results show that the proposed E-DLGR algorithms may have less transmission overhead, thus further reducing energy consumption, and converge faster while still maintaining adequate accuracy.

  相似文献   
43.
Wu  Zheng  Meng  Xuan  Shi  Li  Liu  Naiwang 《Journal of Porous Materials》2022,29(2):493-500
Journal of Porous Materials - In this work, a trifluoromethanesulfonic acid (TFOH) modified clay (TFOH-Clay) was developed for the removal of trace olefins in heavy naphtha. 5%TFOH-Clay can...  相似文献   
44.
Incompressible dipping substrata are commonly encountered in engineering practice. Compared to horizontal underlying strata, the inclined underlying stratum increase the risk of collapse of embankments reinforced with columns because it weakens the restraint of the column base. The objective of this study is to investigate the effectiveness of geosynthetics on improving the embankment stability when the underlying stratum is inclined. The influence of geosynthetic tensile stiffness on the ultimate surcharge and failure mechanism is studied. A deep-seated failure with column tilting occurs when the geosynthetic tensile stiffness is low, whereas a lateral sliding occurs when the geosynthetic tensile stiffness is high. To illustrate the contribution of geosynthetics, the distribution of the lateral pressures acting on the columns is analyzed.  相似文献   
45.
We report for the first time a Na-ion battery anode material composed of P-doped CoSe2 nanoparticles(P-CoSe2)with the size of 5-20 nm that are uniformly embed in a 3D porous honeycomb-like carbon network.High rate capability and cycling stability are achieved simultaneously.The honeycomb-like carbon network is rationally designed to support high electrical conductivity,rapid Na-ion diffusion as well as the accommodation of the volume expansion from the active P-CoSe2 nanoparticles.In particular,heteroatom P-doping within CoSe2 introduces stronger P-Co bonds and additional P-Se bonds that signif-icantly improve the structure stability of P-CoSe2 for highly stable sodiation/desodiation over long-term cycling.P-doping also improves the electrical conductivity of the CoSe2 nanoparticles,leading to highly elevated electrochemical kinetics to deliver high specific capacities at high current densities.Benefiting from the unique nanostructure and atomic-level P-doping,the P-CoSe2(2∶1)/C anode delivers an excel-lent cycle stability with a specific capacity of 206.9 mA h g-1 achieved at 2000 mA g-1 after 1000 cycles.In addition,this material can be synthesized using a facile pyrolysis and selenization/phosphorization approach.This study provides new opportunities of heteroatom doping as an effective method to improve the cycling stability of Na-ion anode materials.  相似文献   
46.
47.
Multibody System Dynamics - This paper represents an explicit analytical solution for attitude dynamics of spacecraft combination during on-orbit refueling. Due to the fuel transfer from the...  相似文献   
48.
In this work, the hydrothermally-synthesized sodium niobate nanowires were used to decompose Rhodamine B dye solution through the piezo-catalytic effect. With the sodium niobate catalyst, a high piezo-catalytic degradation ratio of ~80% was achieved under the excitation of vibration for the Rhodamine B dye solution (~5?mg/l). These active species in the catalytic process, hydroxyl radicals and superoxide radicals with the strong oxidation ability, were also observed, which confirmed the key role of piezoelectric effect for piezo-catalysis. The piezo-catalysis of sodium niobate nanowires provides a high-efficiency and reusable tool in application in depredating the dye wastewater.  相似文献   
49.
Proton induced X-ray emission (PIXE) technique and factor analysis were used to study the recovery of making-technology of Chinese Longquan celadon made in the late Southern Song Dynasty (1127–1279 CE). Based on factor analysis, for the raw material for body and the recipe for glaze, there is a close but slightly different relationship between these Longquan celadons unearthed from the core area of Dayao and the non-core area, despite all the Longquan celadons belong to the high-calcium-glaze system. The chemical compositions of most of the tentative body and glaze samples are very close to those of Longquan celadons unearthed from the core area of Dayao and the non-core area. This study can provide a guidance for recovery of making-technology of Longquan celandon.  相似文献   
50.
The extensive research interests in environmental temperature can be linked to human productivity / performance as well as comfort and health; while the mechanisms of physiological indices responding to temperature variations remain incompletely understood. This study adopted a physiological sensory nerve conduction velocity (SCV) as a temperature‐sensitive biomarker to explore the thermoregulatory mechanisms of human responding to annual temperatures. The measurements of subjects’ SCV (over 600 samples) were conducted in a naturally ventilated environment over all four seasons. The results showed a positive correlation between SCV and annual temperatures and a Boltzmann model was adopted to depict the S‐shaped trend of SCV with operative temperatures from 5°C to 40°C. The SCV increased linearly with operative temperatures from 14.28°C to 20.5°C and responded sensitively for 10.19°C‐24.59°C, while tended to be stable beyond that. The subjects’ thermal sensations were linearly related to SCV, elaborating the relation between human physiological regulations and subjective thermal perception variations. The findings reveal the body SCV regulatory characteristics in different operative temperature intervals, thereby giving a deeper insight into human autonomic thermoregulation and benefiting for built environment designs, meantime minimizing the temperature‐invoked risks to human health and well‐being.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号